Home | | Latest | About | Random
defining exp function
calculus of exp
hyperbolic functions
l'hospital rule
## General log and general exponentiation with different bases. (6.4 $\ast$)
restriction of domain; inverse trig and inverse hyperbolic
^ so we can integrate more functions
deferred
## Logarithmic derivative.
Often it is useful to compute the derivative of the natural logarithm of a function $f$ to find its derivative. We note that $\frac{d}{dx}\ln(f(x))= \frac{f'(x)}{f(x)}$. This is called the **logarithmic derivative** of $f$.
This is useful whenever you want $f'$ but $f$ is a product of many things.
Example.
Compute $f'(x)$ if $$
f(x) = \frac{(3x^2+x-1)\sqrt{x^5+8}}{(x^3+2)(x+1)^{1 / 3}}
$$
Ok. First take its natural log: $$
\ln(f(x) = \ln(3x^2+x-1)+\frac{1}{2}\ln(x^5 + 8)-\ln(x^3 + 2)- \frac{1}{3} \ln(x+1)
$$
Then take the derivative of this log: $$
\frac{d}{dx}\ln f(x) = \frac{6x + 1}{3x^2 + x - 1} + \frac{5x^4}{2(x^5 + 8)} - \frac{3x^2}{x^3 + 2} - \frac{1}{3(x+1)}
$$
So by the logarithmic derivative rule, $\frac{d}{dx}\ln(f(x))= \frac{f'(x)}{f(x)}$, we have $$
\begin{align*}
&f'(x) = f(x) \cdot \frac{d}{dx}\ln(f(x))\\
&=\frac{(3x^2+x-1)\sqrt{x^5+8}}{(x^3+2)(x+1)^{1 / 3}}\left(\frac{6x + 1}{3x^2 + x - 1} + \frac{5x^4}{2(x^5 + 8)} - \frac{3x^2}{x^3 + 2} - \frac{1}{3(x+1)}\right)
\end{align*}
$$